Overview of prostate cancer imaging

Thomas Hope, MD

Associate Professor of Radiology, UCSF
Abdominal Imaging and Nuclear Medicine
Director of Molecular Therapy
Chief of Nuclear Medicine SFVAMC

University of California San Francisco

@thomashopemd

Disclosures

- Clovis Oncology: grant support
- Philips: grant support
- Novartis/AAA: trial participation
- ITM: consultant
- Curium: consultant
- RayzeBio: consultant
- Blue Earth Diagnostics: advisory board
- Ipsen: advisory board

1. Review of CT/MRI

2. Introduce PSMA PET

3. Review the impact of PSMA

1. Review of CT/MRI

2. Introduce PSMA PET

3. Review the impact of PSMA

CT: computed tomography

- Is a measurement of density
- Intravenous contrast helps in evaluation of solid organs and soft tissues
- Also allows for imaging of bone and lung

CT: computed tomography

- Is a measurement of density
- Intravenous contrast helps in evaluation of solid organs and soft tissues
- Also allows for imaging of bone and lung

CT: computed tomography

- Is a measurement of density
- Intravenous contrast helps in evaluation of solid organs and soft tissues
- Also allows for imaging of bone and lung

- Standard for evaluation of primary tumor
- Use in biochemical recurrence is more heterogeneous

- Standard for evaluation of primary tumor
- Use in biochemical recurrence is more heterogeneous

T1 post-contrast imaging

- Standard for evaluation of primary tumor
- Use in biochemical recurrence is more heterogeneous

Dynamic contrast enhanced imaging

- Standard for evaluation of primary tumor
- Use in biochemical recurrence is more heterogeneous

Bone scintigraphy

- Study takes four hours
 - -three hours of uptake after injection
- Can perform an associated SPECT/ CT, but increases time and costs
- Limited by low sensitivity and specificity

"Conventional Imaging"

CT	MRI	Bone Scan
 Widely available Fast, easy Full coverage (chest/abdomen/ pelvis) 	 Usually limited to imaging the pelvis Uncomfortable (endorectal coil, long, loud, claustrophobic) 	 Fast, easy Cheap, no issues with reimbursement In all existing guidelines and used in all trials

Overall, all have a low specificity

PET/CT

- Radiolabeled compound
 - typically 18F-FDG
 - also Ga68, C11, Cu64...
- Decays by releasing a positron
- Positron then travels a finite distance and decays into two photons
 - positron range of F18 is roughly 2 mm

PET/CT: various radioisotopes

Isotope	Emax	Rmax
Ga-68	1.9	8.2
O-15	1.7	7.3
N-13	1.2	5.1
C-11	0.97	4.1
F-18	0.64	2.4

NaF PET/CT

- Better spatial resolution
- High signal to background
- CT available for correlation
- Shorter time from injection to imaging
 - imaging is done 60 minutes after injection compared to three hours with bone scans

FDG PET/CT

- No value in detection
- Uptake is correlated with aggressiveness
- Infrequently used, and role is mainly in castrate resistant patients

1. Review of CT/MRI

2. Introduce PSMA PET

3. Review the impact of PSMA

Prostate Specific Membrane Antigen

68Ga-PSMA-11

68Ga-PSMA-11

68Ga-PSMA-11

WB anterior MIP

69 year old man status post RP PSA = 0.67

Disease site 1: right humerus

UCSF/UCLA BCR clinical data

 635 patients in total, split between UCSF and UCLA

Median PS/

- Three blind
 - –Actually 9
- Composite
 - –223 patienvalidation
 - -93 with his

Inter-reader variability

100

prostate bed, $\kappa = 0.65 (0.61-0.70)$

pelvic nodes, $\kappa = 0.73 (0.69-0.78)$

extrapelvic soft tissue, $\kappa = 0.70 (0.65-0.74)$

bone, $\kappa = 0.78 (0.73-0.82)$

Figure 2. Detection Rate on a Patient Basis Stratified by PSA and Region

PPV:

- -Composite endpoint: 0.92
- -Histopathology: 0.84

Fendler, JAMA Oncology (2019)

Multiple

regions

Bone (M1b)

Extrapelvic

Pelvic nodes

nonbone (M1a/c)

Ga 68 PSMA-11 PET FDA Approval

- Ga 68 PSMA-11 Injection is a radioactive diagnostic agent indicated for positron emission tomography (PET) of prostatespecific membrane antigen (PSMA) positive lesions in men with prostate cancer:
 - -with suspected metastasis who are candidates for initial definitive therapy.
 - -with suspected recurrence based on elevated serum prostate- specific antigen (PSA) level.

Gallium-68

- 68 minute half-life
- Generator produced
 - Usually can only make 2-3 doses per synthesis
- PET emitter (91%)
 - -8 mm positron range
- Metal chemistry
 - -simple synthesis using modules

18F-DCFPyL

- Termed the "PyL" compound
- Much lower blood pool activity
- Completed Phase III trials awaiting NDA approval!

Rowe JNM (2015)

DCFPyL: OSPREY and CONDOR trials

OSPREY	CONDOR	
 Cohort A: initial staging (n=252) Specificity 98%, sensitivity 40% Cohort B: biochemical recurrence (n=93) Inclusion criteria required disease on conventional imaging Sensitivity 96% and PPV 82% Median PSA of 11.3 	 Biochemical recurrence only n=208 Did not require biopsiable lesions Baseline PSA of 0.8 Correct localization rate: 85-87% CLR: % of patients with a one-to-one correspondence between 18F-DCFPyL by the cetthe composite SO Detection rate 59-6 	
Pienta J Urol 2021	Morris Clin Cancer Res 2021	

Piflufolastat F 18 PET FDA Approval

- PYLARIFY Injection is a radioactive diagnostic agent indicated for positron emission tomography (PET) of prostate-specific membrane antigen (PSMA) positive lesions in men with prostate cancer:
 - -with suspected metastasis who are candidates for initial definitive therapy.
 - -with suspected recurrence based on elevated serum prostate- specific antigen (PSA) level.

PSMA-1007 NCT04742361

NCT04186845 NCT04186819 rh-PSMA-7

Ga 68 gozetotide PET FDA Approval

- ILLUCCIX, after radiolabeling with Ga 68, is a radioactive diagnostic agent indicated for positron emission tomography (PET) of prostate-specific membrane antigen (PSMA) positive lesions in men with prostate cancer:
 - -with suspected metastasis who are candidates for initial definitive therapy.
 - -with suspected recurrence based on elevated serum prostate- specific antigen (PSA) level.

Variations in biodistribution...

NCCN guidelines: updated 9/10/2021

- Initial staging (PROS-2)
 - -Indicated in unfavorable intermediate, high and very high risk patients
- Biochemical recurrence (PROS-9, PROS-10 and PROS-11)
 - –No PSA cutoff provided
- Progression for CSPC systemic therapy (PROS-12)
 - Includes patients with castration resistant disease
- Progression with M0CRPC (PROS-13)

NCCN guidelines: updated 9/10/2021

- Ga-68 PSMA-11, or F-18 piflufolastat PSMA can be considered for equivocal results on initial bone imaging.
- Ga-68 PSMA-11 or F-18 piflufolastat PSMA PET/CT or PET/MRI can be considered for bone and soft tissue (full body) imaging.
- Studies suggest that F-18 piflufolastat PSMA or Ga-68 PSMA-11 PET imaging have a higher sensitivity than C-11 choline or F-18 fluciclovine PET imaging, especially at very low PSA levels.
- Because of the increased sensitivity and specificity of PSMA-PET tracers for detecting micrometastatic disease compared to conventional imaging (CT, MRI) at both initial staging and biochemical recurrence, the Panel does not feel that conventional imaging is a necessary prerequisite to PSMA-PET and that PSMA-PET/CT or PSMA-PET/MRI can serve as an equally effective, if not more effective front-line imaging tool for these patients.

CMS coverage

- The following diagnoses are applicable to piflufolastat F 18 (PYLARIFY®) injections when billed with 78811, 78812, 78813, 78814, 78815 or 78816. Use A9597 to bill for this service effective 5/26/2021. Use the PS modifier.
 - –NOTE: Whenever a personal history diagnosis code (Z85.XXX) is on a claim, the claim must also contain a diagnosis code from the list of covered C, D, or R diagnosis codes.
- Effective 09/10/2021, the NCCN Guidelines have been updated to allow PMSA-PET/CT or PMSA-PET/MRI with F 18 piflufolastat PSMA to be considered effective for initial bone imaging with the use of the 'PI' modifier.

Code	Description
C61	Malignant neoplasm of prostate
R97.21	Rising PSA following treatment for malignant neoplasm of prostate
Z85.46	Personal history of malignant neoplasm of prostate

PSMA vs Fluciclovine

- Benign lesions
 - -Rib lesions
 - -Pre-sacral ganglia
 - Dorsal root ganglia
 - -Hemangiomas
 - –Paget's disease
- Other tumors
 - -HCC
 - –Thyroid cancer
 - –Lung cancer

- Benign lesions
 - -Rib lesions
 - -Pre-sacral ganglia
 - Dorsal root ganglia
 - -Hemangiomas
 - -Paget's disease
- Other tumors
 - -HCC
 - -Thyroid cancer
 - –Lung cancer

- Benign lesions
 - -Rib lesions
 - -Pre-sacral ganglia
 - Dorsal root ganglia
 - -Hemangiomas
 - –Paget's disease
- Other tumors
 - -HCC
 - -Thyroid cancer
 - –Lung cancer

- Benign lesions
 - -Rib lesions
 - -Pre-sacral ganglia
 - Dorsal root ganglia
 - -Hemangiomas
 - -Paget's disease
- Other tumors
 - -HCC
 - –Thyroid cancer
 - –Lung cancer

- Benign lesions
 - -Rib lesions
 - -Pre-sacral ganglia
 - -Dorsal root ganglia
 - -Hemangiomas
 - -Paget's disease
- Other tumors
 - -HCC
 - -Thyroid cancer
 - –Lung cancer

- Benign lesions
 - -Rib lesions
 - -Pre-sacral ganglia
 - Dorsal root ganglia
 - -Hemangiomas
 - -Paget's disease
- Other tumors
 - -HCC
 - -Thyroid cancer
 - –Lung cancer

- Benign lesions
 - -Rib lesions
 - -Pre-sacral ganglia
 - Dorsal root ganglia
 - -Hemangiomas
 - -Paget's disease
- Other tumors
 - -HCC
 - –Thyroid cancer
 - –Lung cancer

Fibrous dysplasia

- Benign lesions
 - -Rib lesions
 - -Pre-sacral ganglia
 - Dorsal root ganglia
 - -Hemangiomas
 - -Paget's disease
- Other tumors
 - -HCC
 - -Thyroid cancer
 - –Lung cancer

- Benign lesions
 - -Rib lesions
 - -Pre-sacral ganglia
 - Dorsal root ganglia
 - -Hemangiomas
 - -Paget's disease
- Other tumors
 - -HCC
 - -Thyroid cancer
 - -Lung cancer

1. Review of CT/MRI

2. Introduce PSMA PET

3. Review the impact of PSMA

Prostate cancer

Initiation of ADT:

Primary treatment:
Radical prostatectomy
Radiation therapy

DX

(androgen deprivation therapy)

PSA recurrence: "Biochemical recurrence"

2nd and 3rd line therapies:

- abiraterone / enzalutamide

Death

- docetaxel / cabazitaxel
- Ra-223
- PARPi
- Immunotherapy

72 year old man with Gleason 4+4

72 year old man with Gleason 4+4

Role in initial staging: PSMA PET versus pathology at time of prostatectomy (n=277)

- Sensitivity
 - **→**40%
- Specificity
 - **→**95%

PSA of 23.7, Gleason 4+3

Recurrence after radiation therapy

Effect of PSMA PET on RT planning

- 45 patients with high risk at staging
 - -12 received boost to nodes
 - -6 had RT to bone metastases
 - –8 had nodes outside of consensus CTV

53% had change in RT plans

Prostate cancer

Initiation of ADT:

PSA recurrence:

"Biochemical recurrence"

(androgen deprivation therapy)

Primary treatment:

Radical prostatectomy Radiation therapy

DX

Development of castration resistant prostate cancer

2nd and 3rd line therapies:

Death

- abiraterone/enzalutamide
- docetaxel / cabazitaxel
- Ra-223

Frank metastases

Biochemical Recurrence

Post-RP	Post-Radiation
 AUA guidelines: PSA > 0.2 ng/dL 6-12 weeks after prostatectomy Confirmed on repeated PSA 	ASTRO-Phoenix: • PSA rise over post-radiation nadir of at least 2.0 ng/dL

Detection rate on PSMA PET directly related to the PSA at time of imaging

PSMA "negative" tumors

Outcomes in patients treated with SRT after PSMA PET (median PSA 0.26)

Freedom from Progression (FFP): PSA rise of 0.2 over nadir

PSMA "negative" tumors

Remember, a negative PSMA PET does not mean that men should be observed...

Location of recurrence

- 125 patients with PSA < 2.0 after RP
- 53% with PSMA+ disease
- 30% had disease missed by standard RT

Management changes depends on location of disease

- Neg > surveillance
- Pelvic nodes > RT
- Mets > systemic

Fendler 2019 JNM

Biochemical recurrence Post RP: PSA increase from 0.5 to 0.9

EMPIRE-1: Fluciclovine vs Cl

- Post-RP BCR patients
- Primary endpoint:
 - -Event free survival (events defined as biochemical or clinical recurrence or progression, or initiation of systemic therapy)
- Biochemical free survival @ 4 years: 51.2% versus 75.5% (p<0.0001)

	Conventional imaging-guided (n=82)	*F-fluciclovine- PET/CT-guided (n=83)
PSA before radiotherapy, ng/mL	0.34 (0.82)	0-34 (0-92)
Androgen deprivation therapy— long-term use (18–24 months)	8 (10%)	9 (11%)
Androgen deprivation therapy— any use	28 (35%)	30 (38%)

Jani 2021 Lancet

Theranostics

The use of a compound for both diagnostics and therapeutics

PSMA I&T

VISION results: 177Lu-PSMA-617

TheraP trial...

Pending PSMA trials

Company sponsored	Academic trials
PSMAddition (AAA/Novartis); n=750+	ENZA-P (ANZUP); n=160
177Lu-PSMA-617+ADT/abi vs ADT/abi	177Lu-PSMA-617+enza vs enza
Metastatic CSPC	First line mCRPC
PSMAfore (AAA/Novartis); n=495	LuPARP (Peter Mac); n=52
177Lu-PSMA-I&T vs second line abi/enza	177Lu-PSMA-617 + olaparib
Pre-chemo mCRPC	Post-chemo mCRPC
SPLASH (POINT Biopharma); n=415	CCTG trial; n=200
177Lu-PSMA-I&T vs second line abi/enza	177Lu-PSMA-617 vs docetaxel
Pre-chemo mCRPC	Pre-chemo mCRPC
AcTION (AAA/Novartis); n=30	Bullseye (Radbound); n=58
225Ac-PSMA-617 Phase 1	177Lu-PSMA-617 in oligometastatic patients
Pre/post-chemo mCRPC	Pre-hormonal mCSPC

**

Targeted Ac225 Alpha Therapy is one of the most effective Treatments for Metastatic Prostate Cancer. For more information on the efficacy of Actinium 225 Therapy do call us at +91 98111 27080, or write to us at info@nuclearmedicinetherapy.in or visit nuclearmedicinetherapy.in

Summary

- 1. Two PSMA PET radiotracers (PSMA-11 and 18F-piflufolostat) are FDA approved and covered by Medicare
- 2. PSMA PET is superior to existing radiotracers for the detection of metastatic prostate cancer
- 3. 177Lu-based PSMA-targeted radioligand therapy should be approved by the FDA in the coming months

