The QuEST for an effective immunotherapy for Prostate Cancer

James L. Gulley, M.D., Ph.D., F.A.C.P.
Head, Immunotherapy Section
Chief, Genitourinary Malignancies Branch &
Director, Medical Oncology Service
Center for Cancer Research
National Cancer Institute, NIH
I have the following financial relationships to disclose:

The NCI has a Cooperative Research and Development Agreement (CRADA) with a number of pharma partners including Bavarian Nordic, ImmunityBio, Incyte, EMD Serono and has a clinical trial agreement (for biologics) with BMS. The CRADAs provide drug and may provide resources for co-development in clinical trials.

- and -

I will discuss the following off label use and/or investigational use in my presentation:

Ipilimumab
Nivolumab
Cancer Immunity Cyclical Evolution (E⁸)

1. Emit antigen
2. Engage
3. Expand
4. Expedition
5. Excursion
6. Establish ID
7. Enable

Blood vessel
Lymph node
Tumor

Modified from Chen and Mellman, *Immunity* 2013
Cancer Immunity Cyclical Evolution (E^8)

1. Emit antigen
2. Engage
3. Expand
4. Expedition
5. Excursion
6. Establish ID
7. Enable

Vaccine
CAR-T
Bispecific Ab
Prostvac increases intra/peritumoral immune infiltrate in patients with localized prostate cancer undergoing radical prostatectomy (NCT02153918) (n=27)

<table>
<thead>
<tr>
<th>Biopsy</th>
<th>Priming Vaccination s.c.</th>
<th>Booster Vaccination s.c.</th>
<th>Booster Vaccination s.c.</th>
<th>Booster Vaccination s.c.</th>
<th>RP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Day 1</td>
<td>Day 15</td>
<td>Day 29</td>
<td>Day 57</td>
<td>64</td>
</tr>
</tbody>
</table>

≥ 2X ↑ CD4 Infiltrate
≥ 2X ↑ CD8 Infiltrate

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Yes</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Peripheral IR</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Peripheral IR</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>17/24</td>
<td>14/24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RNA expression profiles consistent with an activated immune response post vaccine

Houssein et al., JITC 2020
Importance of PD-1/PD-L1 blockade
Cancer Immunity Cyclical Evolution

1. Emit antigen
2. Engage
3. Expand
4. Expedition
5. Excursion
6. Establish ID
7. Enable

Blood vessel
Lymph node
Tumor

Modified from Chen and Mellman, *Immunity* 2013

Vaccine

PD1i
Experimental algorithm for immunotherapy for mCRPC

Biomarker (MSI-H; TMB)

~5% Positive

~95% Negative

+ PD-1 or PD-L1 inhibitor

Possible activity

No activity

Pembrolizumab

~50% response

FDA Approved

Madan and Gulley Nature Rev. Urology, 2018
Prostvac (+ Ipilimumab) + Nivolumab (NCT02933255)

- Eligibility (n=12)
 - mCRPC
 - No prior chemotherapy

- Treatment
 - Prostvac Vaccine
 - Immune checkpoints
 - Ipilimumab 1 mg/kg
 - Nivolumab 240 mg
Anti-PD1

Prostvac

Nivolumab

CR

4 years!
Prostvac + Nivo (+ipi)
Multi-layered immunosuppression

- Tumors insulate themselves with dense layers of immunosuppressive stroma
- Overcoming the many layers of interconnected and often functionally redundant immune suppressive mechanisms represents a daunting challenge for tumor-specific T cells
- Immunotherapy can “peel back” the layers of local immune suppression, thereby restoring the capacity of T cells to eradicate the tumor
QuEST-1 (Quick Efficacy Seeking Trial)
Ongoing study (QuEST1)

- CRPC
- ORR / sustained PSA ↓

Redman et al., *JITC* Sept 2018
Spider Plot

Change in Size of Tumor

Time

bigger

smaller
Bintrafusp alfa in HPV Associated Malignancies

- ORR was 18/59 (31%)
- Total Clinical Response rate (included 3 delayed responses) was 21/59 (36%)

*Includes 2 patients with SCC rectal tumors, 1 patient (each) with neuroendocrine cervical, vaginal, and vulvar tumors from study 012.
Targeting Brachyury

- Brachyury (TBXT)
 - Overexpressed in tumor vs. normal tissue
 - Involved in EMT / drug resistance / cellular plasticity
 - Expression associated with NE markers and PTEN loss in prostate cancer
 - T-cells specific for brachyury can kill brachyury expressing cells in an MHC restricted manner

Pinto et al, Clin Ca Res 2014
Well tolerated (no DLT)

28 of 34 (82%) patients developed brachyury-specific CD4 and/or CD8 T-cell responses after vaccination
N-803

- Improved affinity for IL2/15R-β (CD122) expressing immune cells (NKs and T cells)
- Longer serum half-life than native IL15 (25 h vs. 40 min) in mice

Increased NK function on a per-cell basis

Anti-metastatic activity

- Balb/C mice injected with IL-15/IL15RA-Fc (1ug/IP). Purified NK cell activity tested on day 3.
- 4T1 tumor bearing Balb/C mice injected with IL-15/IL15RA-Fc (1ug/IP) on day 7. Tumor metastases counted on day 26. Dependent on CD8 and NK cells

Kim et al, Oncotarget, 2016
Best PSA Responses

Redman...Gulley, ESMO 2020

- 24 weeks
- 31 weeks
- 27+ weeks
- 41+ weeks
- 11+ weeks
- 49+ weeks

Prior Abiraterone/Enzalutamide
Prior Chemotherapy + Abiraterone/Enzalutamide
Patient 34

Prior Treatment
- Sipuleucel-T
- Enzalutamide
- Radium-223 + Niraparib (Trial)
- Adenoviral vaccine targeting PSA, MUC1, Brachyury

Baseline

~1 Year On Treatment

PSA

% Change in PSA from Baseline

Weeks on Treatment

steroids

Patient 34
Conclusions

- Immunotherapy can be powerful, and can lead to complete responses which are durable
- Despite the impressive results seen in subsets patients in some cancer, unselected patients with prostate cancer rarely have objective responses to current immunotherapy monotherapy
- In order to harness the potential power of immunotherapy in prostate cancer, one must address the critical elements that are necessary for an immune response
- Approaches that (a) stimulate a relevant immune response, (b) expand number and function of those immune cells and (c) facilitate functionality in the TME may be essential for “immune deserts” like mCRPC.
Clinical Cancer Immunotherapy Program

- Ravi Madan MD
- Marijo Bilusic MD PhD
- Julius Strauss MD
- Houssein Sater MD
- Fatima Karzai MD
- William Dahut MD
- Jenn Marte MD MPH
- Jay Redman MD
- Harris Floudas, MD
- Scott Norberg DO
- John Shin, MD
- Lisa Cordes PharmD
- Andrea Apolo MD
- Scot Niglio MD
- Kazusa Ishii MD
- Isaac Brownell MD PhD
- Peter Pinto MD
- Piyush Agarwal MD
- Christian Hinrichs MD
- Arun Rajan MD
- Anish Thomas MD
- Tom Waldmann MD
- Udo Rudloff MD PhD
- Jennifer Jones MD PhD
- Clint Allen MD

Translational Laboratory Team
- Jeffrey Schlom PhD
- Jim Hodge PhD
- Claudia Palena PhD
- Renee Donahue PhD
- Caroline Jochems MD PhD
- Jack Greiner PhD
- Duane Hamilton PhD
- Sofia Gameiro PhD

Patients and their Families