Anti-CTLA-4 Therapy in Prostate Cancer

NASPCC Symposium on Immuno-Oncology in Prostate Cancer: Current and Future Trends

June 24, 2021

Sumit K. Subudhi, MD, PhD
Assistant Professor
Genitourinary Medical Oncology
Disclosures

• **Consulting or Advisory Role:** Amgen, Apricity Health, AstraZeneca, Bayer, Bristol-Myers Squibb, Cancer Expert Now, Dava Oncology, Dendreon, Exelixis, Janssen Oncology, Javelin Oncology, Kahr Bio, and MD Education Limited

• **Research Funding:** AstraZeneca, Bristol-Myers Squibb, and Janssen Oncology

• **Joint Scientific Committee:** Janssen Oncology, Polaris

• I will be discussing non-FDA approved indications during my presentation.
Immunosuppressive Cold Prostate Tumor Microenvironment

Allison JP, Sharma P and Subudhi SK
MD Anderson Cancer Center Immunotherapy Platform

Do immune checkpoint therapies work in prostate cancer?
FDA-Approved Immune Checkpoint Therapies

Pembrolizumab Induced Radiographic Responses in a Subset of Metastatic Prostate Cancer

<table>
<thead>
<tr>
<th>Response</th>
<th>PD-L1 Positive n = 133</th>
<th>PD-L1 Negative n = 66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Response (CR)</td>
<td>2 (2)</td>
<td>0</td>
</tr>
<tr>
<td>Partial Response (PR)</td>
<td>5 (4)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>SD ≥ 6 months</td>
<td>10 (8)</td>
<td>10 (15)</td>
</tr>
</tbody>
</table>

Ipilimumab Did Not Improve Overall Survival (OS) in Patients with Metastatic Prostate Cancer

Subset of Patients Derive Durable Benefit from Ipilimumab

Fizazi K et al., *Eur Urol*, 2020.
Can we identify the subset of patients with metastatic prostate cancer who benefit from anti-CTLA-4?
Clinical Outcomes in Patients with Metastatic Prostate Cancer After Ipilimumab

Clinical Trial Schema (NCT02113657)

Ipilimumab Enhanced T Cell Responses Against Prostate Cancer Mutant Neoantigens for Patient #7

<table>
<thead>
<tr>
<th># Somatic Mutations</th>
<th># Non-Synonymous Mutations</th>
<th># Expressed Non-Synonymous Mutations</th>
<th># Neoantigens Detected by ELISPOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
<td>13</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peptide Name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>rho guanine nucleotide exchange factor 37 (WT)</td>
<td>H-GYVPSFLARARSPV LNGWSLPS-OH</td>
</tr>
<tr>
<td>rho guanine nucleotide exchange factor 37 (MUT)</td>
<td>H-GYVPSFLARAWSPV LNGWSLPS-OH</td>
</tr>
</tbody>
</table>

Transcriptional Signatures of T Cell Effector Cells/Functions were Associated with Favorable Outcomes

Increased Density of Effector T Cells was Associated with Favorable Outcomes

Conclusions

- Low TMB prostate tumors can have high density of effector T cells and/or IFN-γ response signature
- These biomarkers may select for patients benefiting from ipilimumab
- Ipilimumab enhanced systemic antigen-specific T cell responses
What prevents anti-CTLA-4 from being more effective in prostate cancer?
Anti-CTLA-4 Increased Immune Infiltration Within the Primary Prostate Tumor Microenvironment

Increased Tumor-Infiltrating T Cells were Insufficient Due to Adaptive Resistance (Upregulation of PD-L1 and VISTA)

Differentially-Expressed Genes

Total DEGs
N = 850

Immune DEGs
N = 41

Pre-treatment
Post-treatment
(Immune cells)
(Tumor cells)

PD-L1

VISTA

Ipilimumab Increased PD-L1 Expression on CD8, CD68, and Prostate Tumor Cells

Concurrent Targeting of the CTLA-4 and PD-(L)1 Pathways Improved Survival in a Murine Model of Prostate Cancer
Conclusions

• Ipilimumab induced upregulation of PD-L1/VISTA within the TME

• PD-L1/VISTA have different mechanisms of inhibiting T cell functions
 • Myeloid cells expressing PD-L1 or VISTA suppress T cell functions

• Targeting both CTLA-4 and PD-1 improved outcomes in a preclinical model of prostate cancer
Can we improve clinical responses by co-targeting the CTLA-4 and PD-(L)1 pathways?
Study Design for CheckMate 650 in Prostate Cancer

Open-label, multicenter, phase 2 study (NCT02985957)

Patients with mCRPC
- Ongoing ADT confirmed by testosterone level ≤1.73 nmol/L (50 ng/dL)
- ECOG performance status ≤1

Cohort 1: Asymptomatic or minimally symptomatic patients who progressed after ≥1 second-generation hormone therapy and had not received chemotherapy in the mCRPC setting (N = 45)*

Cohort 2: Patients who progressed after cytotoxic chemotherapy in the mCRPC setting (N = 45)*

NIVO 1 mg/kg IV + IPI 3 mg/kg IV Q3W for up to 4 doses
- Treatment continued until progression or unacceptable toxicity
- Treatment beyond progression was permitted b

NIVO 480 mg IV Q4W

Co-primary endpoints:
- Investigator-assessed ORR (per RECIST 1.1)
- rPFS (per PCWG2 criteria)

Secondary endpoints:
- OS
- Safety

Exploratory endpoints:
- PSA response rate
- Correlation of biomarkers (PD-L1, HRD, DDR, TMB) with efficacy

Treatment Exposure and Patient Disposition

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Cohort 1 (N = 45)</th>
<th>Cohort 2 (N = 45)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median follow-up, months</td>
<td>11.9</td>
<td>13.5</td>
</tr>
<tr>
<td>Treatment exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median duration of therapy, months (range)</td>
<td>2.1 (0–13.6+)</td>
<td>1.4 (0–17.2+)</td>
</tr>
<tr>
<td>Combination doses received, median (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIVO</td>
<td>3.0 (1–4)</td>
<td>3.0 (1–4)</td>
</tr>
<tr>
<td>IPI</td>
<td>3.0 (1–4)</td>
<td>3.0 (1–4)</td>
</tr>
<tr>
<td>Patients receiving 4 combination doses, n (%)</td>
<td>15 (33.3)</td>
<td>11 (24.4)</td>
</tr>
<tr>
<td>NIVO maintenance doses received, median (range)</td>
<td>n = 14</td>
<td>n = 9</td>
</tr>
<tr>
<td></td>
<td>2.0 (1–11)</td>
<td>2.0 (1–15)</td>
</tr>
<tr>
<td>On study treatment, n (%)</td>
<td>2 (4.4)</td>
<td>1 (2.2)</td>
</tr>
<tr>
<td>Reasons for treatment discontinuation, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease progression</td>
<td>15 (33.3)</td>
<td>20 (44.4)</td>
</tr>
<tr>
<td>Study drug toxicity</td>
<td>23 (51.1)</td>
<td>20 (44.4)</td>
</tr>
<tr>
<td>Adverse event unrelated to study drug</td>
<td>1 (2.2)</td>
<td>1 (2.2)</td>
</tr>
<tr>
<td>Patient withdrew consent</td>
<td>2 (4.4)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Other/not reported</td>
<td>2 (4.4)</td>
<td>3 (6.7)</td>
</tr>
</tbody>
</table>

+ Indicates a censored value.

Clinical Response Outcomes for Nivolumab Plus Ipilimumab

Objective response (measurable disease only)a

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1 (N = 32)</th>
<th>Cohort 2 (N = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmed ORR, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td>11.5–43.4</td>
<td>2.1–26.5</td>
</tr>
<tr>
<td>Confirmed ORR, n (%)</td>
<td>8 (25.0)</td>
<td>3 (10.0)</td>
</tr>
<tr>
<td>Best overall response, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable disease</td>
<td>13 (40.6)</td>
<td>11 (36.7)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>9 (28.1)</td>
<td>13 (43.3)</td>
</tr>
<tr>
<td>Unable to determine</td>
<td>2 (6.3)</td>
<td>3 (10.0)</td>
</tr>
<tr>
<td>Complete response</td>
<td>2 (6.3)b</td>
<td>2 (6.7)</td>
</tr>
<tr>
<td>Partial response</td>
<td>6 (18.8)c</td>
<td>1 (3.3)</td>
</tr>
<tr>
<td>Stable disease</td>
<td>13 (40.6)</td>
<td>11 (36.7)</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>9 (28.1)</td>
<td>13 (43.3)</td>
</tr>
<tr>
<td>Unable to determine</td>
<td>2 (6.3)</td>
<td>3 (10.0)</td>
</tr>
<tr>
<td>Disease control rate, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 (46.9)</td>
<td>4 (13.3)</td>
</tr>
<tr>
<td>Median time to response, months (Q1–Q3)</td>
<td>1.9 (1.9–2.8)</td>
<td>2.1 (1.9–7.4)</td>
</tr>
</tbody>
</table>

• Objective response was ongoing in 5/8 responders in cohort 1 and all 3 responders in cohort 2

Duration of Responses for Patients with Objective Responses

<table>
<thead>
<tr>
<th>OBJECTIVE RESPONDERS</th>
<th>PD-L1</th>
<th>HRD</th>
<th>DDR</th>
<th>TMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ongoing objective response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Responder at MD Anderson

PSA (ng/mL)

Months
Expanded Phase 2 Clinical Trial

Screening Phase
- Metastatic CRPC treated with prior docetaxel-containing regimen
- Tissue/plasma required for retrospective BM testing
- ECOG PS 0-1

Treatment Phase
(N = approximately 315)

- **Arm D1 (n= 90)**
 - Nivolumab 3 mg/kg + Ipilimumab 1 mg/kg Q3W up to 4 cycles,
 - then Nivolumab 480 mg Q4W

- **Arm D2 (n= 90)**
 - Nivolumab 1 mg/kg Q3W (8 doses)+ Ipilimumab 3 mg/kg Q6W (4 doses) of Ipilimumab, then Nivolumab 480 mg Q4W

- **Arm D3 (n= 45)**
 - Ipilimumab 3 mg/kg Q3W up to 4 cycles

- **Arm D4 (n= 90)**
 - Cabazitaxel 25mg/m² Q3W + Prednisone 10mg PO D1-D21

Follow-up Phase
- Treat until PD, or unacceptable toxicity or up to a maximum treatment of 2 years
- Treat until PD, or unacceptable toxicity or maximum of 4 cycles
- Treat until PD, or unacceptable toxicity or maximum of 10 cycles

Randomization 2:2:1:2
Stratification: measurable vs non-measurable disease

Follow-up
- Follow-up Visit 1 & Visit 2
- Survival Follow-up
Conclusions

• Combining anti-CTLA-4 and anti-PD-1 may improve clinical outcomes in a subset of patients

• Need to explore dose/schedule to potentially mitigate toxicities

• New rational combinations will be needed to provide clinical benefit for a greater number of patients
Prostate Cancer Bone Metastases were Associated with Poorer Survival

<table>
<thead>
<tr>
<th></th>
<th>Lymph Node Only</th>
<th>Bone Only</th>
<th>Bone + Lymph Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Men</td>
<td>6.4</td>
<td>42.9</td>
<td>29.8</td>
</tr>
<tr>
<td>Overall Survival (Months)</td>
<td>31.6</td>
<td>21.3</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Halabi, S et al., *J Clin Oncol*, 2016.
How effective is concurrently targeting the CTLA-4 and PD-(L)1 pathways in patients with mCRPC to the bones?
Durvalumab + Tremelimumab in mCRPC to the Bones

Concurrent Treatment

Durvalumab (1500 mg)

Tremelimumab (75 mg)

Maintenance

Durvalumab (1500 mg)

Bone Marrow Collections

NCT03204812 (N=26)

Subudhi SK, Siddiqui B et al., *manuscript in review*
Efficacy Outcomes

PSA PFS

Median PSA PFS: **0.9 months**
(95% CI: 0.9-1.8)

Radiographic PFS

Median rPFS: **3.7 months**
(95% CI: 1.9-5.7)

Overall Survival

Median OS: **28.1 months**
(95% CI: 14.5 – NR)

Subudhi SK, Siddiqui B et al., *manuscript in review*
Summary of Efficacy Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Patients with Response Information</td>
<td>25 (100)</td>
</tr>
<tr>
<td>PSA Response*</td>
<td>3 (12)</td>
</tr>
<tr>
<td>ORR</td>
<td>0 (0)</td>
</tr>
<tr>
<td>DCR</td>
<td>6 (24)</td>
</tr>
<tr>
<td>CR</td>
<td>0 (0)</td>
</tr>
<tr>
<td>PR</td>
<td>0 (0)</td>
</tr>
<tr>
<td>SD</td>
<td>6 (24)</td>
</tr>
<tr>
<td>PSA PFS – Months, Median (CI)</td>
<td>0.9 (0.9 - 1.8)</td>
</tr>
<tr>
<td>rPFS – Months, Median (CI)</td>
<td>3.7 (1.9 - 5.7)</td>
</tr>
<tr>
<td>OS – Months, Median (CI)</td>
<td>28.1 (14.5 – NR)</td>
</tr>
</tbody>
</table>

12 month OS (Standard Error) 96% (4%)

24 month OS (Standard Error) 54% (10%)

Subudhi SK, Siddiqui B et al., *manuscript in review*
Macrophage/Neutrophil Transcriptional Signatures Upregulated Within the Bone Tumor Microenvironment

Subudhi SK, Siddiqui B et al., manuscript in review
Targets of Immunosuppressive Myeloid Cells Within the Bone Tumor Microenvironment

Subudhi SK, Siddiqui B et al., manuscript in review
Conclusions

• Combining anti-CTLA-4 and anti-PD-L1 was safe and tolerable

• Concurrently targeting immunosuppressive myeloid cells may improve clinical benefit for a greater number of patients
Are there clinically effective ways to target immunosuppressive myeloid cells?
Therapeutic Approaches for Targeting Immunosuppressive Myeloid Cells

- Immune checkpoints (PD-L1, VISTA)
- Cytokines / Chemokines (IL-8, IL-23)
- Tyrosine kinase pathways (VEGFR2, AXL, PTEN/PI3K)
- Metabolic pathways (adenosine, arginine)
Adenosine Pathway Expression Correlates with Unfavorable Survival in Prostate Cancer

Subudhi SK et al., ESMO 2020.
Radiographic PFS: Docetaxel + anti-PD-1 + Adenosine Receptor Antagonist
Conclusions

• Targeting the adenosine pathway may improve outcomes with immune checkpoint based-combinations
Moving Forward

• Rational sequential/combinatorial strategies:
 – Increase T cell infiltration
 – Target immune checkpoints
 – Modulating immunosuppressive cells
 – Influence of other factors (e.g., metabolism, hypoxia, microbiome, epigenetics, etc.)

• Improve patient selection
Acknowledgements

GU Medical Oncology
Ana Aparicio
John Araujo
Paul Corn
Jianjun Gao
Christopher Logothetis
Patrick Pilie
Padmanee Sharma
Shi-Ming Tu
Amado Zurita-Saavedra
Bilal Siddiqui
Jennifer Wang

Patients

CheckMate 650 Investigators
Padmanee Sharma
Russell Pachynski
Vivek Narayan
Aude Flechon
Gwenaelle Gravis
Matthew Galsky
Hakim Mahammedi
Akash Patnaik
Marika Ciprotti
Burcin Simek
Abdel Saci
Sarah Hu
G. Celine Han
Karim Fizazi

Immunotherapy Platform
James Allison
Sreyashi Basu
Fei Duan
Sonali Jindal
Padmanee Sharma
Shalini Singh
Luis Vence

Genomics Medicine
Andrew Futreal
Chang-Jiun Wu
Jianhua Zhang

Urology
Brian Chapin

Pathology
Patricia Troncoso
Miao Zhang

Other Funding Sources
V Foundation – Lloyd Family
MDACC Prostate Cancer Moon Shot