Anti-CTLA-4 Therapy in Prostate Cancer

NASPCC Symposium on Immuno-Oncology in Prostate Cancer: Current and Future Trends

June 24, 2021

Sumit K. Subudhi, MD, PhD

Assistant Professor

Genitourinary Medical Oncology

Disclosures

- Consulting or Advisory Role: Amgen, Apricity Health, AstraZeneca, Bayer,
 Bristol-Myers Squibb, Cancer Expert Now, Dava Oncology, Dendreon, Exelixis,
 Janssen Oncology, Javelin Oncology, Kahr Bio, and MD Education Limited
- Research Funding: AstraZeneca, Bristol-Myers Squibb, and Janssen Oncology
- Joint Scientific Committee: Janssen Oncology, Polaris
- I will be discussing non-FDA approved indications during my presentation.

Immunosuppressive Cold Prostate Tumor Microenvironment

Allison JP, Sharma P and Subudhi SK MD Anderson Cancer Center Immunotherapy Platform

Lu X et al., Nature, 2017.

Do immune checkpoint therapies work in prostate cancer?

FDA-Approved Immune Checkpoint Therapies

Zang X et al., Proc Natl Acad Sci, 2003.

Melanoma

- Ipilimumab (2011)
- Nivolumab (2014)
- Ipilimumab + Nivolumab (2015)
- Pembrolizumab (2019)
- Atezolizumab (2020)

Lung Carcinoma

- Nivolumab (2015)
- Pembrolizumab (2015)
- Atezolizumab (2016)
- Durvalumab (2018)
- Ipilimumab + Nivolumab (2020)

Urothelial Carcinoma

- Atezolizumab (2016)
- Avelumab (2017)
- Durvalumab (2017)
- Nivolumab (2017)
- Pembrolizumab (2017)

Renal Cell Carcinoma

- Nivolumab (2015)
- Ipilimumab + Nivolumab (2018)
- Avelumab (2019)

Colorectal Carcinoma

- Nivolumab (2017)
- Pembrolizumab (2017)
- Ipilimumab + Nivolumab (2018)

Head and Neck Squamous Cell Carcinoma

- Nivolumab (2016)
- Pembrolizumab (2016)

Lymphoma

- Nivolumab (2016)
- Pembrolizumab (2017)

Hepatocellular Carcinoma

- Nivolumab (2017)
- Pembrolizumab (2018)
- Ipilimumab + Nivolumab (2020)

Merkel Cell Carcinoma

- Avelumab (2017)
- Pembrolizumab (2018)

Cutaneous Squamous Cell Carcinoma

- Cemiplimab (2018)
- Pembrolizumab (2020)

Esophageal Carcinoma

- Pembrolizumab (2019)
- Nivolumab (2020)

Gastric/Gastroesophageal Adenocarcinoma

Pembrolizumab (2017)

Cervical Carcinoma

Pembrolizumab (2018)

Breast Carcinoma

Atezolizumab (2019)

Uterine Carcinoma

Pembrolizumab (2019)

Mesothelioma

lpilimumab + Nivolumab (2020)

Basal Cell Carcinoma

Cemiplimab (2020)

Pembrolizumab Induced Radiographic Responses in a Subset of Metastatic Prostate Cancer

Response	PD-L1 Positive n = 133	PD-L1 Negative n = 66
Complete Response (CR)	2 (2)	0
Partial Response (PR)	5 (4)	2 (3)
SD ≥ 6 months	10 (8)	10 (15)

Ipilimumab Did *Not* Improve Overall Survival (OS) in Patients with Metastatic Prostate Cancer

Pre-Chemotherapy

Post-Chemotherapy

Beer TM et al., J Clin Oncol, 2016.

Kwon ED et al., Lancet Oncol, 2014.

Subset of Patients Derive Durable Benefit from Ipilimumab

Can we identify the subset of patients with metastatic prostate cancer who benefit from anti-CTLA-4?

Clinical Outcomes in Patients with Metastatic Prostate Cancer After Ipilimumab

Clinical Trial Schema (NCT02113657)

Ipilimumab Enhanced T Cell Responses Against Prostate Cancer Mutant Neoantigens for Patient #7

# Somatic	# Non-Synonymous	# Expressed	# Neoantigens
Mutations	Mutations	Non-Synonymous Mutations	Detected by ELISPOT
122	13	8	2

Peptide Name	Sequence
rho guanine nucleotide exchange factor 37 (WT)	H-GYVPSGFLARARSPVLWGWSLPS-OH
rho guanine nucleotide exchange factor 37 (MUT)	H-GYVPSGFLARAWSPVLWGWSLPS-OH

Subudhi SK et al., Sci Transl Med, 2020.

Transcriptional Signatures of T Cell Effector Cells/Functions were Associated with Favorable Outcomes

Increased Density of Effector T Cells was Associated with Favorable Outcomes

Subudhi SK et al., Sci Transl Med, 2020.

Conclusions

- Low TMB prostate tumors can have high density of effector T cells and/or IFN-γ response signature
- These biomarkers may select for patients benefiting from ipilimumab
- Ipilimumab enhanced systemic antigen-specific T cell responses

What prevents anti-CTLA-4 from being more effective in prostate cancer?

Anti-CTLA-4 Increased Immune Infiltration Within the Primary Prostate Tumor Microenvironment

Increased Tumor-Infiltrating T Cells were Insufficient Due to Adaptive Resistance (Upregulation of PD-L1 and VISTA)

(Tumor cells)

Gao JJ et al., Nature Med, 2017.

Ipilimumab Increased PD-L1 Expression on CD8, CD68, and Prostate Tumor Cells

Nucleus
Tumor/Epithelial cells
PD-L1
CD4
CD8
CD68

Concurrent Targeting of the CTLA-4 and PD-(L)1 Pathways Improved Survival in a Murine Model of Prostate Cancer

Conclusions

- Ipilimumab induced upregulation of PD-L1/VISTA within the TME
- PD-L1/VISTA have different mechanisms of inhibiting T cell functions
 - Myeloid cells expressing PD-L1 or VISTA suppress T cell functions
- Targeting both CTLA-4 and PD-1 improved outcomes in a preclinical model of prostate cancer

Can we improve clinical responses by co-targeting the CTLA-4 And PD-(L)1 pathways?

Study Design for CheckMate 650 in Prostate Cancer

Open-label, multicenter, phase 2 study (NCT02985957)

Patients with mCRPC

- Ongoing ADT confirmed by testosterone level ≤1.73 nmol/L (50 ng/dL)
- ECOG performance status ≤1

Cohort 1: Asymptomatic or minimally symptomatic patients who progressed after ≥1 second-generation hormone therapy and had not received chemotherapy in the mCRPC setting (N = 45)^a

Cohort 2: Patients who progressed after cytotoxic chemotherapy in the mCRPC setting (N = 45)^a

NIVO
1 mg/kg IV
+
IPI
3 mg/kg IV
Q3W for up
to 4 doses

- Treatment continued until progression or unacceptable toxicity
- Treatment beyond progression was permitted^b

Co-primary endpoints:

- Investigator-assessed ORR (per RECIST 1.1)
- rPFS (per PCWG2 criteria)

Secondary endpoints:

- OS
- Safety

Exploratory endpoints:

- PSA response rate
- Correlation of biomarkers (PD-L1, HRD, DDR, TMB) with efficacy

 Patients who had received ≥1 combination dose and who had toxicity that did not meet discontinuation criteria were permitted to begin NIVO maintenance before completion of all 4 combination doses

Treatment Exposure and Patient Disposition

Characteristic	Cohort 1 (N = 45)	Cohort 2 (N = 45)
Median follow-up, months	11.9	13.5
Treatment exposure Median duration of therapy, months (range)	2.1 (0–13.6+)	1.4 (0–17.2+)
Combination doses received, median (range) NIVO IPI	3.0 (1–4) 3.0 (1–4)	3.0 (1–4) 3.0 (1–4)
Patients receiving 4 combination doses, n (%)	15 (33.3)	11 (24.4)
NIVO maintenance doses received, median (range)	n = 14 2.0 (1–11)	n = 9 2.0 (1–15)
On study treatment, n (%)	2 (4.4)	1 (2.2)
Reasons for treatment discontinuation, n (%)		
Disease progression	15 (33.3)	20 (44.4)
Study drug toxicity	23 (51.1)	20 (44.4)
Adverse event unrelated to study drug	1 (2.2)	1 (2.2)
Patient withdrew consent	2 (4.4)	0 (0)
Other/not reported	2 (4.4)	3 (6.7)

Clinical Response Outcomes for Nivolumab Plus Ipilimumab

Objective response (measurable disease only) ^a	Cohort 1 (N = 32)	Cohort 2 (N = 30)
Confirmed ORR, n (%)	8 (25.0)	3 (10.0)
95% CI	11.5–43.4	2.1–26.5
Best overall response, n (%)		
Complete response	2 (6.3) ^b	2 (6.7)
Partial response	6 (18.8) ^c	1 (3.3)
Stable disease	13 (40.6)	11 (36.7)
Progressive disease	9 (28.1)	13 (43.3)
Unable to determine	2 (6.3)	3 (10.0)
Disease control rate, n (%)	15 (46.9)	4 (13.3)
Median time to response, months (Q1–Q3)	1.9 (1.9–2.8)	2.1 (1.9–7.4)

Objective response was ongoing in 5/8 responders in cohort 1 and all 3 responders in cohort 2

Duration of Responses for Patients with Objective Responses

Responder at MD Anderson

Expanded Phase 2 Clinical Trial

Conclusions

- Combining anti-CTLA-4 and anti-PD-1 may improve clinical outcomes in a subset of patients
- Need to explore dose/schedule to potentially mitigate toxicities
- New rational combinations will be needed to provide clinical benefit for a greater number of patients

Prostate Cancer Bone Metastases were Associated with Poorer Survival

	Lymph Node Only	Bone Only	Bone + Lymph Node
% Men	6.4	42.9	29.8
Overall Survival (Months)	31.6		21.3

Adapted from Halabi, S et al., J Clin Oncol, 2016.

How effective is concurrently targeting the CTLA-4 and PD-(L)1 pathways in patients with mCRPC to the bones?

Durvalumab + Tremelimumab in mCRPC to the Bones

NCT03204812 (N=26)

Efficacy Outcomes

PSA PFS

Median PSA PFS: **0.9 months** (95% CI: 0.9-1.8)

Radiographic PFS

Median rPFS: **3.7 months** (95% CI: 1.9-5.7)

Overall Survival

Median OS: **28.1 months** (95% CI: 14.5 – NR)

Summary of Efficacy Outcomes

<u>Outcome</u>	<u>N (%)</u>
All Patients with Response Information	25 (100)
PSA Response*	3 (12)
ORR	0 (0)
DCR	6 (24)
CR	0 (0)
PR	0 (0)
SD	6 (24)
PSA PFS – Months, Median (CI)	0.9 (0.9 - 1.8)
rPFS – Months, Median (CI)	3.7 (1.9 - 5.7)
OS – Months, Median (CI)	28.1 (14.5 – NR)
12 month OS (Standard Error)	96% (4%)
24 month OS (Standard Error)	54% (10%)

Macrophage/Neutrophil Transcriptional Signatures Upregulated Within the Bone Tumor Microenvironment

Targets of Immunosuppressive Myeloid Cells Within the Bone Tumor Microenvironment

Conclusions

- Combining anti-CTLA-4 and anti-PD-L1 was safe and tolerable
- Concurrently targeting immunosuppressive myeloid cells may improve clinical benefit for a greater number of patients

Are there clinically effective ways to target immunosuppressive myeloid cells?

Therapeutic Approaches for Targeting Immunosuppressive Myeloid Cells

- Immune checkpoints (PD-L1, VISTA)
- Cytokines / Chemokines (IL-8, IL-23)
- Tyrosine kinase pathways (VEGFR2, AXL, PTEN/PI3K)
- Metabolic pathways (adenosine, arginine)

Adenosine Pathway

Adenosine Pathway Expression Correlates with Unfavorable Survival in Prostate Cancer

Radiographic PFS: Docetaxel + anti-PD-1 + Adenosine Receptor Antagonist

Conclusions

 Targeting the adenosine pathway may improve outcomes with immune checkpoint based-combinations

Moving Forward

- Rational sequential/combinatorial strategies:
 - Increase T cell infiltration
 - Target immune checkpoints
 - Modulating immunosuppressive cells
 - Influence of other factors (e.g., metabolism, hypoxia, microbiome, epigenetics, etc.)
- Improve patient selection

Acknowledgements

GU Medical Oncology

Ana Aparicio John Araujo Paul Corn

Jianjun Gao

Christopher Logothetis

Patrick Pilie

Padmanee Sharma

Shi-Ming Tu

Amado Zurita-Saavedra

Bilal Siddiqui

Jennifer Wang

Patients

CheckMate 650 Investigators

Padmanee Sharma Russell Pachynski

Vivek Narayan

Aude Flechon

Gwenaelle Gravis

Matthew Galsky

Hakim Mahammedi

Akash Patnaik

Marika Ciprotti

Burcin Simek

Abdel Saci

Sarah Hu

G. Celine Han

Karim Fizazi

Immunotherapy Platform

James Allison

Sreyashi Basu

Fei Duan

Sonali Jindal

Padmanee Sharma

Shalini Singh Luis Vence

Genomics Medicine

Andrew Futreal

Chang-Jiun Wu

Jianhua Zhang

<u>Urology</u>

Brian Chapin

Pathology

Patricia Troncoso

Miao Zhang

Other Funding Sources

V Foundation – Lloyd Family MDACC Prostate Cancer Moon Shot

