“Advancing Immunotherapy Platforms for the Treatment of Prostate Cancers”

Saul Priceman, Ph.D.
Assistant Professor, Dept. Hematology/HCT
Associate Director, Translational Sciences, TCTRL
Beckman Research Institute
City of Hope
Disclosures

• I am on the SAB of Mustang Therapeutics and Imugene Ltd

• I am a consultant for Mustang Therapeutics, Apterna, Imugene Ltd, Bayer

• I have equity in Imugene Ltd

• I receive grant support from Mustang Therapeutics and Imugene Ltd
Adoptive Therapy using CAR-Engineered T Cells

COH CAR TRIALS: 200+ PATIENTS

Anticipated Total Patients

Treated Patients

Number of Patients

CONFIDENTIAL
CD19-CAR T Cells for Relapsed B-Cell Lymphoma and Leukemia

Case Report:
61 yr; male
Relapsed high-grade B cell lymphoma
Lymphodepletion: Flu/Cy
CD19-28z CAR T cells (200M; Tn/mem)
Grade 2 CRS (1x toci); no neurotoxicity

<table>
<thead>
<tr>
<th>Clinical Trial</th>
<th>Disease</th>
<th>Cell Population</th>
<th>Cell Dose (CAR+)</th>
<th>Treated Patients</th>
<th>Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT 02051257</td>
<td>NHL w/ auto-transplant (MRD: low/neg antigen)</td>
<td>Tn/mem</td>
<td>200M</td>
<td>6</td>
<td>Pending</td>
</tr>
<tr>
<td>NCT 02153580</td>
<td>CD19+ B cell Neoplasms (Active disease)</td>
<td>Tn/mem</td>
<td>200M</td>
<td>5</td>
<td>1 of 1 CR (4 Pending)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600M</td>
<td>2</td>
<td>Pending</td>
</tr>
<tr>
<td>NCT 02146924</td>
<td>B-ALL (Active disease)</td>
<td>Tcm</td>
<td>200 M</td>
<td>3</td>
<td>30% CR (1 of 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tn/mem</td>
<td>200 M</td>
<td>13</td>
<td>100% CR (13 of 13)</td>
</tr>
</tbody>
</table>
Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy

Christine E. Brown, Ph.D., Darya Alizadeh, Ph.D., Renate Starr, M.S.,
Lihong Weng, M.D., Jamie R. Wagner, B.A., Araceli Naranjo, B.A.,
Julie R. Ostberg, Ph.D., M. Suzette Blanchard, Ph.D., Julie Kilpatrick, M.S.N.,
Jennifer Simpson, B.A., Anita Kurien, M.B.S., Saul J. Priceman, Ph.D.,
Xiuli Wang, M.D., Ph.D., Todd L. Harshbarger, M.D., Massimo D’Apuzzo, M.D.,
Julie A. Ressler, M.D., Michael C. Jensen, M.D., Michael E. Barish, Ph.D.,
Mike Chen, M.D., Ph.D., Jana Portnow, M.D., Stephen J. Forman, M.D.,
and Behnam Badie, M.D.
CAR T Cell Therapies for Solid Tumors: *Resistance Mechanisms*

- **Tumor antigen heterogeneity**
 - Multitargeted CAR T cell strategies: tandem CARs, universal, syn-notch
 - Sparking endogenous anti-tumor immunity?

- **Immunosuppressive tumor microenvironment (TME)**
 - Combination strategies: radiation therapy, chemotherapy, oncolytic viruses
 - Intrinsic strategies: gene editing checkpoints, secreting ICB, targeting TGFβ
 - Preconditioning, routes of T cell administration, repeat infusions
T Cell Therapy at COH

- Brain
 - Glioma
 - Brain Metastasis

- Solid Tumors
 - Prostate
 - Breast
 - Pancreatic
 - Ovarian
 - Liver

- Hematological
 - Leukemia – AML, ALL
 - Lymphoma
 - Multiple Myeloma
PSCA Expression in Prostate Cancer

- Prostate Stem Cell Antigen (PSCA) was identified by Reiter et al. at UCLA in 1998

- Over-expressed in <60% of primary prostate tumors and 80-100% of metastatic tumors

- Limited expression pattern in normal tissue, making it an ideal target for CAR T cell therapy
PSCA-41BBζ CAR T Cells Show Increased Control of Disseminated Disease

-4-1BB co-stimulation demonstrates durable anti-tumor activity in patient-derived PSCA+ PCa bone metastasis xenograft model, compared with CD28 co-stimulation.

Priceman, et al. *OncoImmunology* 2018
Phase I Clinical Trials to Evaluate PSCA-BBζ CAR T Cells in Solid Tumors

- PSCA+ metastatic castration resistant prostate cancer
 (Clinical PI: Tanya Dorff, MD, Research PI: Saul Priceman, PhD) – Enrolling
- PSCA+ metastatic pancreatic cancer – TBD
Immunologically “Hot” vs. “Cold” Tumors

“Hot”
- CD8 T cells
- Th1
- NK cells
- DCs

IFNg
TNFa
IL-2
IL-12
CXCL9/10

“Cold”
- TAMs
- G/M-MDSCs
- Tregs
- STAT3
- TGFb
- PD-1/PD-L1
- CTLA-4
- VEGF
- IDO

Prostate Cancer / Pancreatic Cancer

Melanoma

Tumor mutational burden:
- ↑

Stromal/Fibrosis contribution:
- ↓

T cell accumulation:
- ↑

High suppressive myeloid/T cells:
- ↓
Syngeneic Immunocompetent Cancer Mouse Model
“Safety and Efficacy”

- Generation of fully-murine CAR construct in retrovirus

- Effective transduction and ex vivo expansion of murine splenic T cells

Murad et al. Mol Ther 2021
Requirement of Lymphodepleting Preconditioning for Solid Tumor CAR T Cell Efficacy

- Safe and effective CPA-preconditioning and PSCA-CAR T cell-mediated anti-tumor responses

Murad et al. Mol Ther 2021
- Tumor infiltration of T cells and PSCA-CAR T cell antitumor activity requires CPA pre-conditioning
- CPA converts to immunologically “warm” tumors with increased CD11c+ DCs and reduced CD206+ M2 macrophages
Lymphodepleting Preconditioning Promotes Endogenous and CAR T Cell Infiltration to Solid Tumors

WITHOUT Pre-conditioning
- Endogenous and CAR T cell infiltration
- CD8/Treg ratio
- M1/M2 ratio
- Pro-inflammatory signature

WITH Pre-conditioning
- Endogenous and CAR T cell infiltration
- CD8/Treg ratio
- M1/M2 ratio
- Pro-inflammatory signature

Tumor cell
- M1 Macrophage
- M2 Macrophage
- CAR T cell
- CD8 T cell
- Treg
- Fibroblast
- Vessel
What are the most rational immunotherapy combinations for CAR T cells?
Despite the benefits of CPA pre-conditioning, PSCA-mCAR T cells only achieve ~50% CR

In PSCA-mCAR T cell + CPA treatment groups, IPA analysis of enriched canonical pathway reveals increased XXX signaling:

Could combination of PSCA-CAR T cell + targeted XXX inhibition improve outcomes?

XXX Pathway Upregulation Following CAR T Cell Therapy

[Image of table showing upregulated pathways with p-values]
XXX Blockade Promotes CAR T Cell Efficacy

-Xi inhibition promotes anti-tumor efficacy of PSCA-CAR T cells
What are the most rational immunotherapy combinations for CAR T cells?

Oncolytic Viruses?
Oncolytic Viruses (OV)

- **Selectively** infect and replicate in tumors, causing direct killing or promoting immunogenic cell death (ICD)

- ICD can induce tumor-associated antigen release, recruitment of APCs, and elicit adaptive antitumor immunity

- Engineer-able to express genes of interest for tumor delivery

- T-VEC – FDA approved HSV-I expressing GM-CSF for metastatic melanoma

- Challenges with using OV as a single therapeutic reagent
Oncolytic Viruses Deliver CAR Targets and ‘Warm Up’ Solid Tumors
Oncolytic Viruses Deliver CAR Targets to “Targetless” Solid Tumors

[Diagram]

- Vaccinia Oncolytic Virus CF33-(SE)hCD19t
- J2R
- hCD19t

Legend:
- Green: Vaccinia Virus
- Pink: CD19
- Blue: DAPI

Park et al. Science Translational Medicine 2020
CD19-CAR T Cells Kill OV19t-Infected Tumors

-OV19t + CD19-CAR T cells show potent anti-tumor activity in vitro
OV19t Drive CD19-CAR T cell Anti-Tumor Responses in Solid Tumors

Combination of OV carrying CD19t and CD19-CAR T cells promotes tumor regression in xenograft model of TNBC

Park et al. Science Translational Medicine 2020
OV19t Promotes Endogenous and CAR T Cell Tumor Infiltration

Combination of OV carrying CD19t and CD19-CAR T cells promotes endogenous cytotoxic T cells and CAR T cells, and memory T cell responses.

Park et al. Science Translational Medicine 2020
CD19-CAR T Cells Drive Intratumoral OV Spread

- CD19-CAR T cells amplify viral spread in solid tumors
- CD19-CAR T cells do not amplify virus spread in normal tissues

Park et al. Science Translational Medicine 2020
Where do we go from here?

• **Lessons from phase 1 trials: reverse translation**
 – Prostate, brain metastasis, ovarian cancer, pancreatic cancer

• **Overcoming tumor antigen escape / immunosuppression**
 – Do immunologically “warm” tumors following better engage endogenous immunity (ICB, CAR, etc)?
 – What is the right combination approach?
 – What is the optimal timing and duration of combination strategies for durable anti-tumor activity?
 – What constitutes a responsive/non-responsive tumor to immunotherapy?
 – Contribution of microbiome? Contribution of neuro-signaling?
Acknowledgements

Priceman Lab

Current members
John Murad, PhD
Anthony Park, PhD
Yuki Yamaguchi, PhD
Lauren Adkins, MS
Gaurav Dhapola, MS
Jackson Gibson, BS
Eric Lee, BS
Jason Yang, BS
Lupita Lopez, BS (GSR)
Cari Young (GSR)
Kevin Ou, BS
Cody Cullen, BS
Catalina Martinez, BS (Proj Mgr)

Past members
Ethan Gerdts (UCSD Med)
Dileshni Tilakawardane, MS (TCTRReg)
Brook Jeang, MS (UCI PhD grad)
Kelly Kennewick, BS (UCLA PhD grad)
Anna Kozlowska, PhD (Poseida)
Rudra Bhowmick, PhD
Achini Bandara, PhD

TCTRL

Stephen Forman, MD (Director)
Christine Brown, PhD (Assoc Director)
Xiuli Wang, MD PhD
Stephen Lin, PhD (Mfg Dir)
Araceli Naranjo, BS (Mfg Mgr)
Jamie Wagner, BS (Reg Mgr)
Brenda Aguilar, MS (Animal Mgr)

Not shown: Jason Yang, Kevin Ou, Cody Cullen, Catalina Martinez

Collaborators

COH: Jana Portnow, MD, Tanya Dorff, MD, Mihaela Cristea, MD, John Burnett, PhD, Marcin Kortylewski, PhD, Monty Pal, MD, Vincent Chung, MD, Hua Yu, PhD, Laleh Melstrom, MD, Ed Manuel, PhD, Mark LaBarge, PhD, Paul Yazaki, PhD, Jack Shively, PhD, Anna Wu, PhD, Russell Rockne, PhD, Ammar Chaudhry, MD PhD, Lorna Rodriguez, MD, Yuman Fong, MD

UCLA: Owen Witte, MD, Robert Reiter, MD
USC: Peter Kuhn, PhD
FHCC: John Lee, MD
Caltech: Lior Pachter, PhD
Emory/GIT: Hadyn Kissick, PhD, Gabriel Kwong, PhD

Industry Partners

Mustang Bio, Inc

Funding Sources

Prostate Cancer Foundation
Curing Together.

Meringoff Foundation
Norris Foundation
Horowitz/Marsh funds