

Chimeric Antigen Receptor T Cell Therapies for Advanced Prostate Cancer

Clinical Trials (and Tribulations)

VIVEK NARAYAN MD, MSCE

ASSISTANT PROFESSOR OF MEDICINE UNIVERSITY OF PENNSYLVANIA ABRAMSON CANCER CENTER

NASPCC Symposium

06/24/2021

OBJECTIVES

- □ REVIEW CURRENT MECHANISMS AND RATIONALE FOR RE-DIRECTED T CELL THERAPIES FOR ADVANCED PROSTATE CANCER
- DESCRIBE AN EARLY EXPERIENCE WITH CAR-T THERAPY FOR ADVANCED PROSTATE CANCER
- DISCUSS CHALLENGES AND FUTURE APPROACHES FOR PROSTATE CANCER CAR-T THERAPY

Complexity of Immune Oncology Targets in Advanced Cancer

PD-1/PD-L1

CTLA-4

Ox40

IAG-3

Tim3.....

Other Targets: Inflammation

Innate Immunity Metabolism Regulatory Cells

Combinations

Radiation Chemo **Vaccines** Immune+Immune

ENGINEERED T-CELL THERAPY: CARS, BITES, TCRS, AND MORE

- ▶ Immunotherapy aims to induce anti-tumor response by "active" or "passive" means:
 - Augmenting immune surveillance and cytotoxicity
 - Reducing immune suppression
- ► Native tumor-specific T cell repertoire is generally limited and low affinity (central tolerance)

► T cell Engineering boosts the immune system's natural recognition abilities through genetic

CHIMERIC ANTIGEN RECEPTOR STRUCTURE

Extracellular Domain:

- Target recognition
- scVf of a monoclonal antibody

Hinge Region:

Spacer providing flexibility

<u>Costimulatory Domain(s)</u>:

- Enhancing cytotoxicity
- Derived from CD28, 4-1BB

Activation Domain:

- Initiating cytotoxicity
- Cytoplasmic motif from CD3z

High Response Rates in Refractory Acute Lymphoblastic Leukemia

Characteristics of Remission and Relapse

Relapses tended to occur early (within the first year)
The majority of relapses were CD19-negative:

*Three of 12 patients were classified as CD19+/- relapse

CD19-Negative CD19-Positive Unknown CD19 Status 2/19 (10.5% of relapses) 14/19 (73.7% of relapses) 3/19 (15.8% of relapses) Sustained CR/CRi 10,000 450 CD19⁺ or CD19 dim relapse 10,000 1,000 450 CD19⁻ relapse* 150 300 Time (days)

Durable remission associated with T cell Intrinsic Factors:

- ► Increased peak expansion of CAR T cells and long persistence
- ► Cell products demonstrating greater proliferative capacity ex vivo
- Phenotypic signatures of early memory differentiation (versus terminal differentiation/exhaustion in Non-Responders)

- In experience to date, clinically meaningful responses are rarely observed.
- Anti-tumor potency limited by:
 - Lack of substantial expansion and/or survival of CAR T cells
 - Tumor Microenvironment (Immunosuppressive, Physical Barriers)
 - Antigen Loss / Heterogeneity
 - On-Target / Off-Tumor Toxicity

PROSTATE SPECIFIC MEMBRANE ANTIGEN (PSMA)

- Membrane glycoprotein evaluated as a tumorassociated antigen for >30 years
- Highly expressed in both normal prostate and PCa tissue
- High PSMA expression associated with PCa progression and castration-resistance
 - Expression increases with tumor grade

Nature Reviews | Urology

TARGET ANTIGEN: PSMA vs CD-19

High / Universal Tumor Expression

Limited Normal Tissue Expression

Functional Role in Tumor / Indispensable

Antigen-related toxicity concerns

PSMA

Low level Salivary, Renal, Intestinal

?? Folate metabolism

?? Sialotoxicity, ? other

CD-19

Normal B cells

Hypogammaglobulinemia

Transforming Growth Factor β (TGF β)

- Contributes to immunosuppressive microenvironment encountered by re-directed T cells upon tumor infiltration
 - Negative feedback of T cell proliferation
 - Limits T cell-mediated autoimmunity
- Co-expression of dominant negative TGFβRII can enhance antitumor immunity

CHIMERIC ANTIGEN RECEPTOR STRUCTURE

Extracellular Domain:

- Target recognition
- scVf of a monoclonal antibody

Hinge Region:

Spacer providing flexibility

Costimulatory Domain(s):

- Enhancing cytotoxicity
- Derived from CD28, 4-1BB

Activation Domain:

- Initiating cytotoxicity
- Cytoplasmic motif from CD3z

CHIMERIC ANTIGEN RECEPTOR STRUCTURE

"Armoring" with co-expression of a dominant negative TGFβ receptor (TGFβRdn) to enhance antitumor immunity

STUDY SCHEMA

^{*} Enrollment follows in succession from Cohort 1 to Cohort 3

CLINICAL APHERESIS & PRE-INFUSION PRODUCT ANALYSIS

- T cell Differentiation Phenotype in Apheresis Product showed donor variability (left)
- ► Frequencies of expanded patient CD3+CD45+ T cells in Infusion Product expressing anti-PSMA CAR (median 65%) and TGFbRDN (median 19%) (center)
- Expression of TGFbRDN on manufactured PSMA-targeted CAR-T cells potently inhibited TGFb signaling through Smad2/3 phosphorylation (right)

SUMMARY OF INITIAL COHORTS (WITHOUT LD CHEMOTHERAPY)

- No evidence of CAR T cell activity in Cohort 1
 - No related Adverse Events
 - Little cytokine activity (Figure Inset)
- Evidence of anti-tumor CAR T cell activity in Cohort 2
 - Grade 3 CRS within hours of CAR T cell infusion
 - Adverse events were reversible
 - Robust cytokine activity in patients with Gr3 CRS

Conclusions:

- CART-PSMA-TGFβRDN cells are safe at 3x10⁸/m² CAR+ cells without conditioning chemotherapy.
- There is a dose dependent relationship with cytokine detection.

STUDY SCHEMA

^{*} Enrollment follows in succession from Cohort 1 to Cohort 3

DOSE- AND LD CHEMO-DEPENDENT CAR T CELL EXPANSION IN PERIPHERAL BLOOD

STUDY SCHEMA

CART-PSMA-TGFBRDN CELL ENGRAFTMENT (QPCR IN PERIPHERAL BLOOD)

CAR-T peak expansion increased with doseescalation and incorporation of Cy / Flu LD chemotherapy

PEAK FOLD-CHANGE IN PRO-INFLAMMATORY CYTOKINE PRODUCTION

▶ Higher grade CRS was associated with a greater magnitude of fold change in proinflammatory analytes post-infusion.

PRELIMINARY EVIDENCE FOR DOSE-DEPENDENT AND LD-CHEMO DEPENDENT ANTI-TUMOR RESPONSE

CART-PSMA-TGFβRDN-02: A Phase 1 Open-Label Multi-Center Study of PSMA Targeted Genetically Modified Chimeric Antigen Receptor T-cells in Patients with Metastatic Castration Resistant Prostate Cancer

ONGOING TRIALS FOR METASTATIC PROSTATE CANCER

Trial	Target	Sponsor	NCT Identifier
Phase 1 Study of CART-PSMA- TGFβRDN in Patients With Metastatic Castration Resistant Prostate Cancer	PSMA	Tmunity Therapeutics	NCT04227275
Phase 1/2 Study of PSCA-Targeted CAR-T Cells (BPX-601) in Subjects With Selected Advanced Solid Tumors	PSCA	Bellicum Pharmaceuticals	NCT02744287
P-PSMA-101 CAR-T Cells in the Treatment of Subjects With Metastatic Castration- Resistant Prostate Cancer (mCRPC)	PSMA	Poseida Therapeutics	NCT04249947
PSCA-CAR T Cells in Treating Patients With PSCA+ Metastatic Castration Resistant Prostate Cancer	PSCA	City of Hope	NCT03873805

Scientific Challenges:

CAR Expansion/Survival

Tumor Microenvironment

Antigen Heterogeneity/Loss

On-Target / Off-Tumor Effects

Clinical Challenges:

Patient Selection

Safety / Toxicity

Therapeutic Window

Scientific Challenges:

CAR Expansion/Survival

Tumor Microenvironment

Antigen Heterogeneity/Loss

On-Target / Off-Tumor Effects

<u>Tumor Microenvironment</u>

"Armoring" strategies – IL-12, IL-18, CD40L

Dominant-Negative Receptors (dnTGFβRII, PD1)

PD1 / CD28 "switch" receptors

Combination Treatment Strategies (low dose RT)

CAR Persistence / "Exhaustion"

Serial dosing strategies

Novel inducible co-activation switches

Immune checkpoint inhibitor adjuvants

CRISPR-Cas9 editing (PD1 / LAG3)

Antigen Selection / Targeting

Combination TAA scFvs

Conditional activation switches

Antigen spread

CONCLUSIONS:

- Adoptive Cell Therapy with CAR-Modified T Cells is a transformative treatment for refractory cancers
- Multiple Tumor and Host factors will influence efficacy for prostate cancer CAR therapy
 - ☐ T cell potency / persistence
 - Antigen Heterogeneity
 - Tumor Microenvironment
 - Off-tumor Effects
- Rational combination / multifunctional approaches are needed
- ☐ Enhanced toxicity mitigation strategies remain critical for optimal Risk : Benefit (first in human trials)

Penn Medicine