CAR-T development in subtypes of prostate cancer: how mechanistic biology impacts future therapies

John K. Lee, MD, PhD
Assistant Professor
Human Biology and Clinical Research Divisions
Fred Hutch
The modern, natural history of prostate cancer – evolving diversity

Increasing frequency of AR- lethal mCRPC after FDA approval of abiraterone and enzalutamide

Adapted from Watson PA, Arora VK, Sawyers CL. Nat Rev Cancer. 2015.

Cell surface phenotypes and molecular subtypes of cancer

- Cell surface phenotypes reflect specific differentiation states in normal development

- Molecular subtypes of cancer have been defined by distinct differentiation or activation states
 - Breast cancer (Luminal A, Luminal B, Basal-like, etc.)
 - Diffuse large B-cell lymphoma (GCB, ABC)

- Cell surface antigens are amenable to Ab-based therapies: ADCs, BiTEs, CAR-Ts

- Are distinct cell surface markers expressed in subsets of CRPC?
Cell surface phenotypes and molecular subtypes of CRPC

Unsupervised hierarchical clustering of a CRPC gene expression dataset based on the expression of a bioinformatically derived set of genes encoding cell surface proteins distinguishes subtypes of prostate cancer.

Nominating cell surface antigens in prostate cancer subtypes

Integration of RNA-seq gene expression and cell surface proteomics of a diverse prostate cancer cell line panel by rank-rank hypergeometric overlap

Six transmembrane epithelial antigen of the prostate 1 (STEAP1) in prostate cancer

- STEAP proteins are metalloreductases
- STEAP proteins form a homo-/hetero-trimeric structure
- STEAP1 is expressed in >80% of mCRPCs and demonstrates limited expression in normal tissues except the prostate
- STEAP1 has been the target of therapeutic development for prostate cancer for many years:
 1. Vandortuzumab vedotin – ADC
 2. AMG 509 – bispecific T cell engager, under investigation in a phase I clinical trial for mCRPC

Cryo-EM structure of STEAP1 as a homotrimer bound to Fab fragments of vandortuzumab

Engineering STEAP1 CAR-T cell therapy for prostate cancer

Second-generation CAR construct

Variants based on scFv and spacer length

Transduction of human T cells

Screening STEAP1 CAR clones for antigen-selective activation of modified T cells

Isogenic 22Rv1 cell lines with defined STEAP1 expression

Co-cultures with STEAP1 CAR-T to evaluate for antigen-selective IFNγ release

Further validation of the antigen-selective activation and cytotoxicity of STEAP1 CAR-T cells \textit{in vitro}

Enumeration of target cell killing by live cell imaging

Discrepant co-culture result relative to STEAP1 expression in PC3?

STEAP1 CAR-T cells are responsive to very low STEAP1 expression in PC3

Potential “double-edged sword” of potency vs. off-tumor, on-target toxicity

STEAP1 CAR-T cells significantly inhibit disease progression in a mouse model of disseminated 22Rv1 with native STEAP1 expression

Potent activity of STEAP1 CAR-T cells also observed in mouse models of disseminated PC3 and C4-2B with native STEAP1 expression.

Disease also not detectable by *ex vivo* bioluminescence imaging of harvested organs/tissues.

Generation of a human STEAP1 knock-in (hSTEAP1-KI) mouse on the C56Bl/6J background to study safety and efficacy in the immune-competent setting

Targeted knock-in strategy

Unpublished data.
Generation and validation of a retroviral murinized STEAP1 CAR construct

Co-cultures of murine splenocytes with RM9 cells

In vivo studies in hSTEAP1-KI/+ mice with disseminated RM9-hSTEAP1 treated with mouse STEAP1 CAR-T have just commenced

Unpublished data.
An example of ongoing efforts to convert the “cold” tumor microenvironment of prostate cancer to a “hot” state as an adjunct to CAR-T cell therapy

Collagen-binding domain (VWF A3)-IL-12 fusion cytokine

 Treatment of syngeneic subcutaneous tumors in C57BL/6J mice

Unpublished data.
Collaboration with Jun Ishihara, Imperial College London.
Increased intratumoral T cell (CD8+>CD4+) and monocyte and macrophage frequencies with CBD-IL-12 treatment of RM9-bearing mice

Unpublished data.
Collaboration with Jun Ishihara, Imperial College London.
CBD-IL-12 treatment is associated with enhanced TCR signaling and antigen presentation in the RM9 tumors

Unpublished data.
Collaboration with Jun Ishihara, Imperial College London.
Understanding NE transdifferentiation as a resistance mechanism in mCRPC

ARPC (AR+/NE-)

NEPC (AR-/NE+)

Anti-androgen therapy

AR program

Loss of TP53 and RB1
MYCN amplification
Loss of REST
Neuronal transcription factor expression
Others

Association ➞ Function?

NEPC is made up of transcriptionally distinct subtypes

NEPC is not an obligate clinical outcome of the loss of TP53 and RB1 in prostate cancer

Loss of TP53 and RB1 in human prostate cancer cell lines does not induce fulminant NE differentiation

Loss of AR expression/signaling, even in the context of PTEN, TP53, and RB1 loss, does not enforce a NEPC phenotype but rather a DNPC (AR-/NE-) phenotype

And many others!
Defining the contribution of defined factors to \textit{in vitro} reprogramming of AR+/NE- to AR-/NE+ prostate cancer

Unpublished data.
Leave-one-out and factor reconstitution analyses identify ASCL1 and NeuroD1 as critical factors involved in the modulation of AR and NE programs.

Neural transcription factors may coordinate AR downregulation and induction of a neuroendocrine differentiation program.

Unpublished data.
NE reprogrammed C4-2B cells are functionally AR independent and are transcriptionally similar to NEPC

Partial least squares regression analysis projecting NE reprogrammed samples onto CRPC samples

Unpublished data.
L1 cell adhesion molecule (L1CAM) in cancer

- Increases cancer cell motility and invasion
- Augments cancer resistance to chemotherapy
- Promotes epithelial-to-mesenchymal transition (EMT)
- Expression in a number of cancers has been associated with progression and poor prognoses
- L1CAM is negatively regulated by AR and REST → explains expression in NEPC?

L1CAM expression associates with NEPC

UW Tissue Acquisition Necropsy data

Prostate cancer cell line models

Patient-derived xenograft models

Unpublished data.
Collaboration with Nelson Lab, Fred Hutch.
Repurposing L1CAM CE7 CAR T cell therapy for NEPC

CE7 recognizes a glycosylation-dependent, tumor-specific epitope of L1CAM

Co-cultures with L1CAM CE7 CAR-T suggest selective T cell activation/killing of NEPC

Currently under evaluation in the ENCIT-01 phase I trial for childhood neuroblastoma at Seattle Children's Hospital (PI: Navin Pinto, MD)

Phase I trial for NEPC currently being planned at SCCA/Fred Hutch (PI: Michael Schweizer, MD)

Unpublished data.
NeuroD1 and SRRM4 drive L1CAM expression during NE reprogramming and susceptibility to CAR-T cell therapy

Enumeration of target cell killing by live cell imaging

Unpublished data.
Conclusions and questions

1. CAR-T development for subtypes of prostate cancer
2. Understanding determinants of transitions in mCRPC disease state may help frame effective CAR-T therapies
3. How do we target prostate cancer heterogeneity (ie. subtypes and subtypes of subtypes) arising with disease progression with CAR-T? Combinatorial immunotherapies?
Acknowledgements

Lee Lab, Fred Hutch
Nik Kamat, M.D.
Shan Li, Ph.D.
Diana DeLucia, Ph.D.
Vipul Bhatia, Ph.D.
Ailin Zhang, Ph.D.
Gerardo Javier
Huiyun Sun
Li-Ting "Tina" Wu

IIRC, Fred Hutch
Jen Casserd

Fred Hutch Shared Resources
Experimental Histopathology
Genomics and Bioinformatics
Flow Cytometry

Funding:

PPCR, Fred Hutch
Peter Nelson, M.D.
Valeri Vasioukhin, Ph.D.
Michael Haffner, M.D., Ph.D.

GU Cancer Research Lab, UW
Colm Morrissey, Ph.D.
Mark Labrecque, Ph.D.
Eva Corey, Ph.D.